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1. Basic definitions

o (k,I)-coloring: a (k,/)-coloring of a graph G is a partition of the
vertex set of G into k + | (possibly empty) subsets
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such that each S; is an independent set and each C; is a clique in G.
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1. Basic definitions

o (k,I)-coloring: a (k,/)-coloring of a graph G is a partition of the
vertex set of G into k + | (possibly empty) subsets

517527"'75kaC17C27"'7CI

such that each S; is an independent set and each C; is a clique in G.
e Call a graph G is (k, /)-colorable if G has a (k, I)-coloring.

o Example.

(3,0)-colorable (1,2)-colorable (0, 3)-colorable
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1. Basic definitions

Let G denote the complement of a graph G.
The clique covering number 6(G): the minimum number of cliques

needed to cover the vertex set of a graph G.
e G is (k,I)-colorable iff G is (/, k)-colorable.
@ (k,0)-colorable graphs are precisely k-colorable graphs.

@ (0, /)-colorable graphs are exactly those graphs of clique covering

number at most /.
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[Promel and Steger (1993)]
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1. Basic definitions

@ The bichromatic number of G:
x2(G) = min {r : Yk, I with k + 1 =r, G is (k, I)-colorable}
[Promel and Steger (1993)]
e Remark: x?(G) = x?(G).
e An example for the case x?(G) = 4. Not (2, 1)-colorable!

(3,0)-colorable (1,2)-colorable (0, 3)-colorable
= (4, 0)-colorable,(3, 1)-colorable, (2, 2)-colorable, (1, 3)-colorable, (0, 4)-

colorable.
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1. Basic definitions

@ The cochromatic number of G:
X°(G) = min {r: 3k, with k +/=r, G is (k, [)-colorable}
[Lesniak and Straight (1977)]
@ Let x(G) and 6(G) denote the chromatic number and the clique
covering number of G, respectively. (0(G) = x(G))
@ Upper bound:
x“(6) < min {x(G),6(G)}
[Lesniak and Straight (1977)]
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1. Basic definitions

xP(G) = min {r : Yk, I with k + 1 =r, G is (k, I)-colorable}

@ Lower bound:

x(G) = max {x(G),0(G)}.
[Promel and Steger (1993)]

(2023.6.9 at SYSU) 7/ 29



1. Basic definitions

xP(G) = min {r : Yk, I with k + 1 =r, G is (k, I)-colorable}

@ Lower bound:
x(G) = max {x(G),0(G)}.
[Promel and Steger (1993)]
e Upper bound:
XP(G) < x(G) +6(G) — 1.
[Promel and Steger (1993)]
Proof: If k+ /= x(G) +6(G) — 1, then k > x(G) or | > 0(G).
It follows that G is (k, /)-colorable. O
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1. Basic definitions

o Complete n-partite graph: a n-partite graph (i.e., a set of graph
vertices admits a partition into n classes s.t. no two vertices within
the same class are adjacent) s.t. every pair of vertices from different

classes are adjacent.
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the same class are adjacent) s.t. every pair of vertices from different
classes are adjacent.

o Let K, p,,....p, be the complete n-partite graph with p; vertices

in the /-th partiteset, 1 <i<n, pp=0<p1 < pp <...< pp.

Proposition (Lesniak and Straight, Ars Combin., 1977)

XC(KPLPZ,-uaPn) = min {n - I+ pi ‘ 0 S I S n}'

Proposition

Xb(KP1,P2,~~~,Pn) =max{n—i+p;|0<i<n}
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1. Basic definitions

Proposition

Xb(KPhPZ:---,Pn) =max{n—i+p;|0<i<n}

Proof: Let G = K, p,,....p,- Consider G = Ko, UKp, U...UKp,.
Let n—k+px=max {n—i+pi|0<i<n}

(2023.6.9 at SYSU) 9/ 29



1. Basic definitions

Proposition

Xb(KPhPZ:---,Pn) =max{n—i+p;|0<i<n}

Proof: Let G = K, p,,....p,- Consider G = Ko, UKp, U...UKp,.
Let n— k+px =max {n—i+p; |0 <i<n}.
o X*(G) < n—k+ py.
(Since G is (pi, n — i)-colorable, G is (n — k + px — (n — i), n — i)-

colorable.)

(2023.6.9 at SYSU) 9/ 29



1. Basic definitions

Proposition

Xb(KPhPZ:---,Pn) =max{n—i+p;|0<i<n}

Proof: Let G = K, p,,....p,- Consider G = Ko, UKp, U...UKp,.

Let n— k+px =max {n—i+p; |0 <i<n}.

o X*(G) < n—k+ py.
(Since G is (pi, n — i)-colorable, G is (n — k + px — (n — i), n — i)-
colorable.)

o x’(G)>n—k+p—1.
(If 1 < k < n, then G is not (px — 1, n — k)-colorable.
If k =0, then G is not (0, n — 1)-colorable.)
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1. Basic definitions

Proposition

Xb(KPth,.--,Pn) =max{n—i+p;|0<i<n}

Proof: Let G = K, p,,....p,- Consider G = Ko, UKp, U...UKp,.

Let n— k+px =max {n—i+p; |0 <i<n}.

o X*(G) < n—k+ py.
(Since G is (pi, n — i)-colorable, G is (n — k + px — (n — i), n — i)-
colorable.)

o x’(G)>n—k+p—1.
(If 1 < k < n, then G is not (px — 1, n — k)-colorable.
If k =0, then G is not (0, n — 1)-colorable.)

o x°(G)=xP(G)=max {n—i+p;|0<i<n}. O
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The independence number a(G): the size of a maximum
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e Proof: x°(G) - x?(G) > x(G) - 6(G) > x(G) - o(G) > n. O

(2023.6.9 at SYSU) 10 / 29



2. Known results

The independence number a(G): the size of a maximum

independent vertex set of a graph G.

Proposition (Epple and Huang, JGT, 2010)

For every graph G on n vertices, x°(G) > \/n.

e Proof: x°(G) - x?(G) > x(G) - 6(G) > x(G) - o(G) > n. O

Theorem (Epple and Huang, JGT, 2010)

The problem of computing the bichromatic number of a graph is NP-hard.
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2. Known results

The bidegree of G: A?(G) = max{A(G), A(G)}.
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2. Known results

The bidegree of G: A?(G) = max{A(G), A(G)}.
@ Brooks-type theorem:

Theorem (Epple and Huang, JGT, 2014)

For any graph G,
Xb(G) < Ab(G) + 1.

Equality holds iff G is one of Ky, Km.m, Cs, Q or their complements.

@ The graph @ in the above theorem is depicted below.
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2. Known results

cograph: a graph not contain P4 (i.e., the path with four vertices) as
an induced subgraph.
[Corneil, Lerchs and Burlingham (1981)]
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cograph: a graph not contain P4 (i.e., the path with four vertices) as
an induced subgraph.
[Corneil, Lerchs and Burlingham (1981)]
box cograph: a box cograph is a cograph G having exactly
X(G)O(G) vertices.
The class of box cographs G is denoted by B(r,s) if x(G) = r and
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2. Known results

cograph: a graph not contain P4 (i.e., the path with four vertices) as
an induced subgraph.
[Corneil, Lerchs and Burlingham (1981)]
box cograph: a box cograph is a cograph G having exactly
X(G)O(G) vertices.
The class of box cographs G is denoted by B(r,s) if x(G) = r and
0(G) =s.
[Epple and Huang (2010)]

o Example: a box cograph of dimension 3 by 4.

(2023.6.9 at SYSU) 12 / 29



2. Known results

Theorem (Epple and Huang, JGT, 2010)

Let G be a graph with x(G) =k, 8(G) = I, x’(G) = k+ 1 — 1, then
G € B(k,1).
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Theorem (Epple and Huang, JGT, 2010)

Let G be a graph with x(G) =k, 8(G) = I, x’(G) = k+ 1 — 1, then
G € B(k,1).

Outline of the proof: Consider a k-coloring 51,55, ...,5Sk and a I-clique
covering C1, Gy, ..., C of G.

e G isnot (k—1,/— 1)-colorable.
(x*(G) > k+1—2. G is not (K, I)-colorable for some
k" +1"=k+1—2. Since G is (k,0)-colorable and (0, /)-colorable,
k<k—1land/'</—1 Thusk'=k—-1and /' =1-1))
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2. Known results

Theorem (Epple and Huang, JGT, 2010)
Let G be a graph with x(G) = k, (G) =1, x?(G) = k + | — 1, then

G € B(k,1).

e G isnot (k—1,/— 1)-colorable.

o | 5NG|=1. (] SinG; |< 1. Suppose | S;N C; |= 0 for some i and j.
Then {S1,...,5-1,5i+1,.-., S, GiNSj, ..., 1N S, GaaNnS;, ...
GNnSi}tisa(k—1,/—1)-coloring of G.)

@ G has Kl vertices.

e G is a cograph.

(Frequently employ the property: if G is a cograph with at least two
vertices then either G or G is disconnected.) O
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2. Known results

Theorem (Epple and Huang, JGT, 2010)
Let G be a graph with x(G) = k and (G) = I. Then x*(G) < k+ 1 —1,

and the following statements (i), (ii) and (iii) are equivalent:

() x*(G)=k+1-1,
(i) G is not (k — 1,1 — 1)-colorable,
(iii) G € B(k,1).
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2. Known results

Theorem (Epple and Huang, JGT, 2010)
Let G be a graph with x(G) = k and (G) = I. Then x*(G) < k+ 1 —1,

and the following statements (i), (ii) and (iii) are equivalent:

() x*(G)=k+1-1,
(i) G is not (k — 1,1 — 1)-colorable,
(iii) G € B(k,1).

e An example for the case x’(G) — 0(G) arbitrarily large.
Given positive integers m and n, let mK,, denote the disjoint union of
m copies of K. It is clear that mK,, € B(n, m), and thus
xP(mK,) = x(G) +6(G) —1=n+m—1.
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3. Our results

The clique number w(G): the maximum order over all cliques of G.

x2(mK,) = n4+ m —1=w(mK,) + 6(mK,) — 1.
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3. Our results

The clique number w(G): the maximum order over all cliques of G.
x2(mK,) = n+ m—1=w(mK,) + 6(mK,) —

A natural upper bound: x°(G) < x(G) + 6(G)

O
\
|
—

Theorem

Let G be a triangle free graph. Then x*(G) < 6(G) + 1, and the following

statements (i), (ii), (iii) and (iv) are equivalent:

(i) X(G) = 6(6) +1,

(i) G is not (1,0(G) — 1)-colorable,

(iii) G € B(2, |V(G)|)

(iv) G is the disjoint union of balanced complete bipartite graphs.
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3. Our results

Let G be a graph with w(G) < 4. Then x*(G) < 6(G) + 2, and the
following statements (i), (ii) and (iii) are equivalent:

(i) X°(G) = 0(G) +2,
(i) G is not (2,6(G) — 1)-colorable,
(iii) G e B(3, Ll
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3. Our results

Let G be a graph with w(G) < 4. Then x*(G) < 6(G) + 2, and the
following statements (i), (ii) and (iii) are equivalent:

(i) X°(G) = 0(G) +2,
(i) G is not (2,6(G) — 1)-colorable,
(iii) G e B(3, Ll

o Remark: If w(G) < 4, then x?(G) < 0(G) + w(G) — 1.
e Problem: If w(G) > 47
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3. Our results

Theorem

Let G be a line graph of a simple graph with w(G) < r+1, r > 4. Then
x2(G) < 0(G) + r — 1, and the following statements (i), (ii) and (iii) are
equivalent:

(i) x*(6) =0(6) +r—1,

(i) G is not (r —1,0(G) — 1)-colorable,

(iii) G is the disjoint union of K.
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4. The proof

Let G be a triangle free graph. Then x(G) < 0(G) + 1, and
xP(G) = 0(G) + 1 iff G is not (1,0(G) — 1)-colorable.
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xP(G) = 0(G) + 1 iff G is not (1,0(G) — 1)-colorable.

Proof: Let G be a triangle free graph with |V(G)|=n>1 and (G) = I.
If | =1, then G = Kj or K>, and thus Xb(G) < 2.
xP(G) = 2 iff G(= Ka) is not (1,0)-colorable.
Assume that [/ > 2.
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4. The proof

Let G be a triangle free graph. Then x(G) < 0(G) + 1, and
xP(G) = 0(G) + 1 iff G is not (1,0(G) — 1)-colorable.

Proof: Let G be a triangle free graph with |V(G)|=n>1 and (G) = I.
If | =1, then G = Kj or K>, and thus Xb(G) < 2.
xP(G) = 2 iff G(= Ka) is not (1,0)-colorable.
Assume that [/ > 2.
Let Co =0, and let Gy, Gy, ..., C; be a partition of V(G) s.t.
each G is a clique.
Foric{0,1,...,/—2}, let G;= G —U/_,C;.
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4. The proof

Let G be a triangle free graph. Then x*(G) < 6(G) + 1, and
x?(G) = 6(G) + 1 iff G is not (1,0(G) — 1)-colorable.

Lemma (Erdés, Gimbel and Straight, Europ. J. Combin. 1990)

If G is triangle free graph other than K3, then x(G) = x°(G).

(2023.6.9 at SYSU) 20 / 29



4. The proof

Let G be a triangle free graph. Then x*(G) < 6(G) + 1, and
x?(G) = 6(G) + 1 iff G is not (1,0(G) — 1)-colorable.

Lemma (Erdés, Gimbel and Straight, Europ. J. Combin. 1990)

If G is triangle free graph other than K3, then x(G) = x°(G).

Since (C/,1 U C/) - V(G,'), G; # Ky. By Lemma,
X(Gi) = x(Gi) < 0(Gi) =1 —i.
Then V(G;) can be partitioned into / — i independent sets

{51,5,...,5-i}.
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4. The proof

Let G be a triangle free graph. Then x*(G) < 6(G) + 1, and
xP(G) = 0(G) + 1 iff G is not (1,0(G) — 1)-colorable.

Then V(G;) can be partitioned into / — i independent sets
{51,5,...,5-i}.

It follows that {S1,52,...,5-i, Ci, G, ..., Ci}is an (/I — i, i)-coloring
of G.

i.e., Gis (I —i,i)-colorable for each i € {0,1,...,/—2}., and

G is (I — i+ 1,i)-colorable for each i € {0,1,...,/ —1}.
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4. The proof

Let G be a triangle free graph. Then x?(G) < 0(G) + 1, and
xP(G) = 0(G) + 1 iff G is not (1,0(G) — 1)-colorable.

If G is (1,/— 1)-colorable, x?(G) < I since G is (0, /)-colorable.
If G is not (1,/— 1)-colorable, xX?(G) = I+ 1 since G is
(1, /)-colorable and (0, / + 1)-colorable.
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4. The proof

Let G be a triangle free graph. Then x?(G) < 0(G) + 1, and
xP(G) = 0(G) + 1 iff G is not (1,0(G) — 1)-colorable.

If G is (1,/— 1)-colorable, x?(G) < I since G is (0, /)-colorable.
If G is not (1,/— 1)-colorable, xX?(G) = I+ 1 since G is
(1, /)-colorable and (0, / + 1)-colorable.
It follows that x°(G) < /+ 1, and x?(G) = I + 1 iff G is not
(1,1 — 1)-colorable.
This completes the proof. []
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4. The proof

Let G be a triangle free graph on n vertices, 0(G) = |. Then G is not
(1,/ — 1)-colorable iff G € B(2, ).
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4. The proof

Let G be a triangle free graph on n vertices, 0(G) = |. Then G is not
(1,/ — 1)-colorable iff G € B(2, ).

Proof:
«<:If G € B(2,5), then G is not (1,/ — 1)-colorable.
=: Since G is triangle free, | > 7.
Suppose that G is not (1,/ — 1)-colorable.
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4. The proof

Let G be a triangle free graph on n vertices, 0(G) = |. Then G is not

(1,/ — 1)-colorable iff G € B(2, ).

Proof:

«<:If G € B(2,5), then G is not (1,/ — 1)-colorable.

=: Since G is triangle free, | > 7.

Suppose that G is not (1,/ — 1)-colorable.

Then | = g and so n is even.

(If I > 3, then there exists a clique C; s.t. |C;| =1, and so G is
(1,1 — 1)-colorable.)
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4. The proof

Lemma (Epple, Ph.D. Thesis, 2011)

Let G be a nonbipartite triangle free graph on n vertices with n even.

Then G is (1,5 — 1)-colorable.

Lemma (Epple, Ph.D. Thesis, 2011)
Let G be a bipartite graph on n vertices with n even. If G is not a box

cograph, then G is (1,5 — 1)-colorable.
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Lemma (Epple, Ph.D. Thesis, 2011)

Let G be a nonbipartite triangle free graph on n vertices with n even.

Then G is (1,5 — 1)-colorable.

Lemma (Epple, Ph.D. Thesis, 2011)

Let G be a bipartite graph on n vertices with n even. If G is not a box

cograph, then G is (1,5 — 1)-colorable.

G is not (1,/ — 1)-colorable, / = 3, nis even. By Lemmas, G is

bipartite and is a box cograph, i.e., G € B(2, 5). O
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5. Open problems

Problem
Every graph G with w(G) <5 = x?(G) < 6(G) +3 ?
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5. Open problems

Problem
Every graph G with w(G) <5 = x?(G) < 6(G) +3 ?

Remark: Every graph G with w(G) <5 = x(G) <0(G)+37

If this is true, then the problem is solved.
Proof: Let G be a graph with w(G) <5, 0(G) =1, I > 1. Let Gy =0,
Let i, Gy, ..., C; be a partition of V(G), s.t. each Cj is a clique. For
i€{0,1,....1—1}, let G = G—U_oG. If X(G) < 6(G)+3=1—i+3
is true. Then V/(G;) can be partitioned into / — i + 3 independent sets
{51,52,...,S5_i+3}. It follows that {51, Sz,...,S/—iy3, C1, Co, ..., G} is
an (I — i+ 3,i)-coloring of G, i.e., G is (I — i+ 3, i)-colorable for each
i€{0,1,...,1—1}. Since G is (0, /)-colorable, G is (t,/ + 3 — t)-color
-able for each t € {0,1,2,3}. So x?(G) < 6(G) + 3. [
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5. Open problems

Problem (Huang, GTCA(The 8th International Symposium on Graph

Theory and Combinatorial Algorithms), 2019)
Characterize graphs G for which x*(G) = x°(G).
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5. Open problems

Problem (Huang, GTCA(The 8th International Symposium on Graph

Theory and Combinatorial Algorithms), 2019)
Characterize graphs G for which x°(G) = x°(G).

Lemma (Ekim and Gimbel, Discrete Math. 2009)

The only triangle free graphs with x(G) = 0(G) are
P3, K1 U Ky, Ps,2K5, Gy, Cs, together with the two graph are depicted

N/ N/
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5. Open problems

Problem (Huang, GTCA, 2019)
Characterize graphs G for which x°(G) = x¢(G).

The only triangle free graphs with x?(G) = x°(G) are P3, K1 U K2, P4, Gs,

together with the two graph are depicted below.
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Problem (Huang, GTCA, 2019)
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5. Open problems

Problem (Huang, GTCA, 2019)
What can be said about graphs G for which x*(G) = x(G) ?

Problem (Huang, GTCA, 2019)
Characterize planar graphs G for which x°(G) = 6(G).
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Thank you!
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