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1. Basic definitions

(k, l)-coloring: a (k, l)-coloring of a graph G is a partition of the

vertex set of G into k + l (possibly empty) subsets

S1, S2, . . . ,Sk ,C1,C2, . . . ,Cl

such that each Si is an independent set and each Cj is a clique in G .

Call a graph G is (k , l)-colorable if G has a (k, l)-coloring.

Example.

(3, 0)-colorable (1, 2)-colorable (0, 3)-colorable
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1. Basic definitions

Let G denote the complement of a graph G .

The clique covering number θ(G ): the minimum number of cliques

needed to cover the vertex set of a graph G .

G is (k , l)-colorable iff G is (l , k)-colorable.

(k, 0)-colorable graphs are precisely k-colorable graphs.

(0, l)-colorable graphs are exactly those graphs of clique covering

number at most l .
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1. Basic definitions

The bichromatic number of G :

χb(G ) = min {r : ∀k, l with k + l = r , G is (k, l)-colorable}
[Prömel and Steger (1993)]

Remark: χb(G ) = χb(G ).

An example for the case χb(G ) = 4. Not (2, 1)-colorable!

(3, 0)-colorable (1, 2)-colorable (0, 3)-colorable

⇒ (4, 0)-colorable,(3, 1)-colorable,(2, 2)-colorable,(1, 3)-colorable,(0, 4)-

colorable.
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1. Basic definitions

The cochromatic number of G :

χc(G ) = min {r : ∃k , l with k + l = r , G is (k, l)-colorable}
[Lesniak and Straight (1977)]

Let χ(G ) and θ(G ) denote the chromatic number and the clique

covering number of G , respectively. (θ(G ) = χ(G ))

Upper bound:

χc(G ) ≤ min {χ(G ), θ(G )}
[Lesniak and Straight (1977)]
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1. Basic definitions

χb(G ) = min {r : ∀k, l with k + l = r , G is (k , l)-colorable}

Lower bound:

χb(G ) ≥ max {χ(G ), θ(G )}.
[Prömel and Steger (1993)]

Upper bound:

χb(G ) ≤ χ(G ) + θ(G )− 1.

[Prömel and Steger (1993)]

Proof: If k + l = χ(G ) + θ(G )− 1, then k ≥ χ(G ) or l ≥ θ(G ).

It follows that G is (k, l)-colorable.
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1. Basic definitions

Complete n-partite graph: a n-partite graph (i.e., a set of graph

vertices admits a partition into n classes s.t. no two vertices within

the same class are adjacent) s.t. every pair of vertices from different

classes are adjacent.

Let Kp1,p2,...,pn be the complete n-partite graph with pi vertices

in the i-th partite set, 1 ≤ i ≤ n, p0 = 0 < p1 ≤ p2 ≤ . . . ≤ pn.

Proposition (Lesniak and Straight, Ars Combin., 1977)

χc(Kp1,p2,...,pn) = min {n − i + pi | 0 ≤ i ≤ n}.

Proposition

χb(Kp1,p2,...,pn) = max {n − i + pi | 0 ≤ i ≤ n}.
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1. Basic definitions

Proposition

χb(Kp1,p2,...,pn) = max {n − i + pi | 0 ≤ i ≤ n}.

Proof: Let G = Kp1,p2,...,pn . Consider G = Kp1 ∪ Kp2 ∪ . . . ∪ Kpn .

Let n − k + pk = max {n − i + pi | 0 ≤ i ≤ n}.

χb(G ) ≤ n − k + pk .

(Since G is (pi , n − i)-colorable, G is (n − k + pk − (n − i), n − i)-

colorable.)

χb(G ) > n − k + pk − 1.

(If 1 ≤ k ≤ n, then G is not (pk − 1, n − k)-colorable.

If k = 0, then G is not (0, n − 1)-colorable.)

χb(G ) = χb(G ) = max {n − i + pi | 0 ≤ i ≤ n}.
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2. Known results

The independence number α(G ): the size of a maximum

independent vertex set of a graph G .

Proposition (Epple and Huang, JGT, 2010)

For every graph G on n vertices, χb(G ) ≥
√

n.

Proof: χb(G ) · χb(G ) ≥ χ(G ) · θ(G ) ≥ χ(G ) · α(G ) ≥ n.

Theorem (Epple and Huang, JGT, 2010)

The problem of computing the bichromatic number of a graph is NP-hard.
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2. Known results

The bidegree of G : ∆b(G ) = max{∆(G ),∆(G )}.

Brooks-type theorem:

Theorem (Epple and Huang, JGT, 2014)

For any graph G ,

χb(G ) ≤ ∆b(G ) + 1.

Equality holds iff G is one of Kn,Km,m,C5,Q or their complements.

The graph Q in the above theorem is depicted below.

(2023.6.9 at SYSU) 11 / 29



2. Known results

The bidegree of G : ∆b(G ) = max{∆(G ),∆(G )}.
Brooks-type theorem:

Theorem (Epple and Huang, JGT, 2014)

For any graph G ,

χb(G ) ≤ ∆b(G ) + 1.

Equality holds iff G is one of Kn,Km,m,C5,Q or their complements.

The graph Q in the above theorem is depicted below.

(2023.6.9 at SYSU) 11 / 29



2. Known results

The bidegree of G : ∆b(G ) = max{∆(G ),∆(G )}.
Brooks-type theorem:

Theorem (Epple and Huang, JGT, 2014)

For any graph G ,

χb(G ) ≤ ∆b(G ) + 1.

Equality holds iff G is one of Kn,Km,m,C5,Q or their complements.

The graph Q in the above theorem is depicted below.

(2023.6.9 at SYSU) 11 / 29



2. Known results

cograph: a graph not contain P4 (i.e., the path with four vertices) as

an induced subgraph.

[Corneil, Lerchs and Burlingham (1981)]

box cograph: a box cograph is a cograph G having exactly

χ(G )θ(G ) vertices.

The class of box cographs G is denoted by B(r , s) if χ(G ) = r and

θ(G ) = s.

[Epple and Huang (2010)]

Example: a box cograph of dimension 3 by 4.
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2. Known results

Theorem (Epple and Huang, JGT, 2010)

Let G be a graph with χ(G ) = k, θ(G ) = l , χb(G ) = k + l − 1, then

G ∈ B(k, l).

Outline of the proof: Consider a k-coloring S1,S2, . . . ,Sk and a l-clique

covering C1,C2, . . . ,Cl of G .

G is not (k − 1, l − 1)-colorable.

(χb(G ) > k + l − 2. G is not (k ′, l ′)-colorable for some

k ′ + l ′ = k + l − 2. Since G is (k, 0)-colorable and (0, l)-colorable,

k ′ ≤ k − 1 and l ′ ≤ l − 1. Thus k ′ = k − 1 and l ′ = l − 1.)
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2. Known results

Theorem (Epple and Huang, JGT, 2010)

Let G be a graph with χ(G ) = k, θ(G ) = l , χb(G ) = k + l − 1, then

G ∈ B(k, l).

G is not (k − 1, l − 1)-colorable.

| Si ∩Cj |= 1. (| Si ∩Cj |≤ 1. Suppose | Si ∩Cj |= 0 for some i and j .

Then {S1, . . . ,Si−1,Si+1, . . . ,Sk ,C1 ∩Si , . . . ,Cj−1 ∩Si ,Cj+1 ∩Si , . . . ,

Cl ∩ Si} is a (k − 1, l − 1)-coloring of G .)

G has kl vertices.

G is a cograph.

(Frequently employ the property: if G is a cograph with at least two
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2. Known results

Theorem (Epple and Huang, JGT, 2010)

Let G be a graph with χ(G ) = k and θ(G ) = l . Then χb(G ) ≤ k + l − 1,

and the following statements (i), (ii) and (iii) are equivalent:

(i) χb(G ) = k + l − 1,

(ii) G is not (k − 1, l − 1)-colorable,

(iii) G ∈ B(k, l).

An example for the case χb(G )− θ(G ) arbitrarily large.

Given positive integers m and n, let mKn denote the disjoint union of

m copies of Kn. It is clear that mKn ∈ B(n,m), and thus

χb(mKn) = χ(G ) + θ(G )− 1 = n + m − 1.
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3. Our results

The clique number ω(G ): the maximum order over all cliques of G .

χb(mKn) = n + m − 1 = ω(mKn) + θ(mKn)− 1.

A natural upper bound: χb(G ) ≤ χ(G ) + θ(G )− 1.

Theorem

Let G be a triangle free graph. Then χb(G ) ≤ θ(G ) + 1, and the following

statements (i), (ii), (iii) and (iv) are equivalent:

(i) χb(G ) = θ(G ) + 1,

(ii) G is not (1, θ(G )− 1)-colorable,

(iii) G ∈ B(2, |V (G)|
2 ),

(iv) G is the disjoint union of balanced complete bipartite graphs.
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3. Our results

Theorem

Let G be a graph with ω(G ) < 4. Then χb(G ) ≤ θ(G ) + 2, and the

following statements (i), (ii) and (iii) are equivalent:

(i) χb(G ) = θ(G ) + 2,

(ii) G is not (2, θ(G )− 1)-colorable,

(iii) G ∈ B(3, |V (G)|
3 ).

Remark: If ω(G ) < 4, then χb(G ) ≤ θ(G ) + ω(G )− 1.

Problem: If ω(G ) ≥ 4 ?
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3. Our results

Theorem

Let G be a line graph of a simple graph with ω(G ) < r + 1, r ≥ 4. Then

χb(G ) ≤ θ(G ) + r − 1, and the following statements (i), (ii) and (iii) are

equivalent:

(i) χb(G ) = θ(G ) + r − 1,

(ii) G is not (r − 1, θ(G )− 1)-colorable,

(iii) G is the disjoint union of Kr .
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4. The proof

Theorem

Let G be a triangle free graph. Then χb(G ) ≤ θ(G ) + 1, and

χb(G ) = θ(G ) + 1 iff G is not (1, θ(G )− 1)-colorable.

Proof: Let G be a triangle free graph with |V (G )| = n ≥ 1 and θ(G ) = l .

If l = 1, then G = K1 or K2, and thus χb(G ) ≤ 2.

χb(G ) = 2 iff G (= K2) is not (1, 0)-colorable.

Assume that l ≥ 2.

Let C0 = ∅, and let C1,C2, . . . ,Cl be a partition of V (G ) s.t.

each Cj is a clique.

For i ∈ {0, 1, . . . , l − 2}, let Gi = G − ∪ij=0Cj .
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4. The proof

Theorem

Let G be a triangle free graph. Then χb(G ) ≤ θ(G ) + 1, and

χb(G ) = θ(G ) + 1 iff G is not (1, θ(G )− 1)-colorable.

Lemma (Erdős, Gimbel and Straight, Europ. J. Combin. 1990)

If G is triangle free graph other than K2, then χ(G ) = χc(G ).

Since (Cl−1 ∪ Cl) ⊆ V (Gi ), Gi 6= K2. By Lemma,

χ(Gi ) = χc(Gi ) ≤ θ(Gi ) = l − i .

Then V (Gi ) can be partitioned into l − i independent sets

{S1,S2, . . . ,Sl−i}.
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χb(G ) = θ(G ) + 1 iff G is not (1, θ(G )− 1)-colorable.

Then V (Gi ) can be partitioned into l − i independent sets

{S1,S2, . . . ,Sl−i}.

It follows that {S1,S2, . . . ,Sl−i ,C1,C2, . . . ,Ci} is an (l − i , i)-coloring

of G .

i.e., G is (l − i , i)-colorable for each i ∈ {0, 1, . . . , l − 2}., and

G is (l − i + 1, i)-colorable for each i ∈ {0, 1, . . . , l − 1}.
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4. The proof

Theorem

Let G be a triangle free graph. Then χb(G ) ≤ θ(G ) + 1, and

χb(G ) = θ(G ) + 1 iff G is not (1, θ(G )− 1)-colorable.

If G is (1, l − 1)-colorable, χb(G ) ≤ l since G is (0, l)-colorable.

If G is not (1, l − 1)-colorable, χb(G ) = l + 1 since G is

(1, l)-colorable and (0, l + 1)-colorable.

It follows that χb(G ) ≤ l + 1, and χb(G ) = l + 1 iff G is not

(1, l − 1)-colorable.

This completes the proof.
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4. The proof

Theorem

Let G be a triangle free graph on n vertices, θ(G ) = l . Then G is not

(1, l − 1)-colorable iff G ∈ B(2, n2 ).

Proof:

⇐: If G ∈ B(2, n2 ), then G is not (1, l − 1)-colorable.

⇒: Since G is triangle free, l ≥ n
2 .

Suppose that G is not (1, l − 1)-colorable.

Then l = n
2 , and so n is even.

(If l > n
2 , then there exists a clique Ci s.t. |Ci | = 1, and so G is

(1, l − 1)-colorable.)
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4. The proof

Lemma (Epple, Ph.D. Thesis, 2011)

Let G be a nonbipartite triangle free graph on n vertices with n even.

Then G is (1, n2 − 1)-colorable.

Lemma (Epple, Ph.D. Thesis, 2011)

Let G be a bipartite graph on n vertices with n even. If G is not a box

cograph, then G is (1, n2 − 1)-colorable.

G is not (1, l − 1)-colorable, l = n
2 , n is even. By Lemmas, G is

bipartite and is a box cograph, i.e., G ∈ B(2, n2 ).
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5. Open problems

Problem

Every graph G with ω(G ) < 5 ⇒ χb(G ) ≤ θ(G ) + 3 ?

Remark: Every graph G with ω(G ) < 5 ⇒ χ(G ) ≤ θ(G ) + 3 ?

If this is true, then the problem is solved.

Proof: Let G be a graph with ω(G ) < 5, θ(G ) = l , l ≥ 1. Let C0 = ∅,
Let C1,C2, . . . ,Cl be a partition of V (G ), s.t. each Cj is a clique. For

i ∈ {0, 1, . . . , l − 1}, let Gi = G −∪ij=0Cj . If χ(Gi ) ≤ θ(Gi ) + 3 = l − i + 3

is true. Then V (Gi ) can be partitioned into l − i + 3 independent sets

{S1,S2, . . . ,Sl−i+3}. It follows that {S1,S2, . . . ,Sl−i+3,C1,C2, . . . ,Ci} is

an (l − i + 3, i)-coloring of G , i.e., G is (l − i + 3, i)-colorable for each

i ∈ {0, 1, . . . , l − 1}. Since G is (0, l)-colorable, G is (t, l + 3− t)-color

-able for each t ∈ {0, 1, 2, 3}. So χb(G ) ≤ θ(G ) + 3.
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i ∈ {0, 1, . . . , l − 1}. Since G is (0, l)-colorable, G is (t, l + 3− t)-color

-able for each t ∈ {0, 1, 2, 3}. So χb(G ) ≤ θ(G ) + 3.
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5. Open problems

Problem (Huang, GTCA(The 8th International Symposium on Graph

Theory and Combinatorial Algorithms), 2019)

Characterize graphs G for which χb(G ) = χc(G ).

Lemma (Ekim and Gimbel, Discrete Math. 2009)

The only triangle free graphs with χ(G ) = θ(G ) are

P3,K1 ∪ K2,P4, 2K2,C4,C5, together with the two graph are depicted

below.
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5. Open problems

Problem (Huang, GTCA, 2019)

What can be said about graphs G for which χb(G ) = χ(G ) ?

Problem (Huang, GTCA, 2019)

Characterize planar graphs G for which χb(G ) = θ(G ).
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Thank you!
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